skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vargas, Santiago"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 22, 2026
  2. Free, publicly-accessible full text available April 9, 2026
  3. QTAIM coupled to graph neural networks can improve model performance and generalizability. 
    more » « less
  4. BBR is a newer TCP congestion control algorithm with promising features, but it can often be unfair to existing loss-based congestion-control algorithms. This is because BBR's sending rate is dictated by static parameters that do not adapt well to dynamic and diverse network conditions. In this work, we introduce BBR-ML, an in-kernel ML-based tuning system for BBR, designed to improve fairness when in competition with loss-based congestion control. To build BBR-ML, we discretized the network condition search space and trained a model on 2,500 different network conditions. We then modified BBR to run an in-kernel model to predict network buffer sizes, and then use this prediction for optimal parameter settings. Our preliminary evaluation results show that BBR-ML can improve fairness when in competition with Cubic by up to 30% in some cases. 
    more » « less
  5. null (Ed.)